
Distributed Cache Service

Best Practices

Issue 01

Date 2024-02-27

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Serializing Access to Frequently Accessed Resources... 1

2 Ranking with Redis... 7

3 Implementing Bullet-Screen and Social Comments with DCS...................................10

4 Merging Game Servers with DCS.. 16

5 Flashing E-commerce Sales with DCS.. 19

6 Reconstructing Application System Databases with DCS... 23

7 Suggestions on Using Redis.. 27

8 Redis Client Retry.. 37

9 Using Nginx for Public Access to Single-node, Master/Standby, or Proxy Cluster
DCS Redis Instances... 43

10 Using SSH Tunneling for Public Access to a DCS Instance..49

11 Using ELB for Public Access to DCS...53

12 Detecting and Handling Big Keys and Hot Keys... 58

Distributed Cache Service
Best Practices Contents

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Serializing Access to Frequently
Accessed Resources

Background

In monolithic deployment, you can use Java concurrency APIs such as
ReentrantLock or synchronized to implement mutual exclusion locks. This native
lock mechanism provided by Java ensures that multiple threads within a Java VM
process are executed concurrently and sequentially.

However, this mechanism may fail in multi-node deployment because a node's
lock only takes effect on threads in the Java VM where the node runs. For
example, the concurrency level in Internet seckills requires multiple nodes to run
at the same time. Assume that requests of two users arrive simultaneously on two
nodes. Although the requests can be processed simultaneously on the respective
nodes, an inventory oversold problem may still occur because the nodes use
different locks.

Solution

To serialize access to resources, ensure that all nodes use the same lock. This
requires a distributed lock.

The idea of a distributed lock is to provide a globally unique "thing" for different
systems to obtain locks. When a system needs a lock, it asks the "thing" for a lock.
In this way, different systems can obtain the same lock.

Currently, a distributed lock can be implemented using cache databases, disk
databases, or ZooKeeper.

Implementing distributed locks using DCS Redis instances has the following
advantages:

● Simple operation: Locks can be acquired and released by using simple
commands such as SET, GET, and DEL.

● High performance: Cache databases deliver higher read/write performance
than disk databases and ZooKeeper.

● High reliability: DCS supports both master/standby and cluster instances,
preventing single points of failure.

Distributed Cache Service
Best Practices

1 Serializing Access to Frequently Accessed
Resources

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Implementing locks on distributed applications can avoid inventory oversold
problems and nonsequential access. The following describes how to implement
locks on distributed applications with Redis.

Prerequisites
● You have created a Windows ECS.
● You have installed JDK1.8 (or later) and a development tool (Eclipse is used

as an example) on the ECS, and downloaded the Jedis client.
● You have created a DCS instance and configured the same VPC and subnet for

the DCS instance and the ECS.

Procedure

Step 1 Run Eclipse on the ECS and create a Java project. Then, create a distributed lock
implementation class DistributedLock.java and a test class CaseTest.java for the
example code, and reference the Jedis client as a library to the project.

Sample code of DistributedLock.java:

package dcsDemo01;

import java.util.UUID;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.params.SetParams;

public class DistributedLock {
 private final String host = "192.168.0.220";
 private final int port = 6379;

 private static final String SUCCESS = "OK";

 public DistributedLock(){}

 /*
 * @param lockName Lock name
 * @param timeout Timeout for acquiring locks
 * @param lockTimeout Validity period of locks
 * @return Lock ID
 */
 public String getLockWithTimeout(String lockName, long timeout, long lockTimeout) {
 String ret = null;
 Jedis jedisClient = new Jedis(host, port);

 try {
 String authMsg = jedisClient.auth("passwd");
 if (!SUCCESS.equals(authMsg)) {
 System.out.println("AUTH FAILED: " + authMsg);
 }

 String identifier = UUID.randomUUID().toString();
 String lockKey = "DLock:" + lockName;
 long end = System.currentTimeMillis() + timeout;

 SetParams setParams = new SetParams();
 setParams.nx().px(lockTimeout);

 while(System.currentTimeMillis() < end) {
 String result = jedisClient.set(lockKey, identifier, setParams);
 if(SUCCESS.equals(result)) {
 ret = identifier;
 break;
 }

Distributed Cache Service
Best Practices

1 Serializing Access to Frequently Accessed
Resources

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.eclipse.org/downloads/
https://jar-download.com/artifacts/redis.clients/jedis/3.5.1/source-code

 try {
 Thread.sleep(2);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 }finally {
 jedisClient.quit();
 jedisClient.close();
 }

 return ret;
 }

 /*
 * @param lockName Lock name
 * @param identifier Lock ID
 */
 public void releaseLock(String lockName, String identifier) {
 Jedis jedisClient = new Jedis(host, port);

 try {
 String authMsg = jedisClient.auth("passwd");
 if (!SUCCESS.equals(authMsg)) {
 System.out.println("AUTH FAILED: " + authMsg);
 }

 String lockKey = "DLock:" + lockName;
 if(identifier.equals(jedisClient.get(lockKey))) {
 jedisClient.del(lockKey);
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 }finally {
 jedisClient.quit();
 jedisClient.close();
 }
 }
}

NO TICE

The code only shows how DCS implements access control using locks. During
actual implementation, deadlock and lock check also need to be considered.

Assume that 20 threads are used to seckill ten Mate 10 mobile phones. The
content of CaseTest.java is as follows:
package dcsDemo01;
import java.util.UUID;

public class CaseTest {
 public static void main(String[] args) {
 ServiceOrder service = new ServiceOrder();
 for (int i = 0; i < 20; i++) {
 ThreadBuy client = new ThreadBuy(service);
 client.start();
 }
 }
}

class ServiceOrder {

Distributed Cache Service
Best Practices

1 Serializing Access to Frequently Accessed
Resources

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

 private final int MAX = 10;

 DistributedLock DLock = new DistributedLock();

 int n = 10;

 public void handleOder() {
 String userName = UUID.randomUUID().toString().substring(0,8) + Thread.currentThread().getName();
 String identifier = DLock.getLockWithTimeout("Mate 10", 10000, 2000);
 System.out.println("Processing order for user " + userName + "");
 if(n > 0) {
 int num = MAX - n + 1;
 System.out.println("User "+ userName + " is allocated number " + num + " mobile phone. Number
of mobile phones left: " + (--n) + "");
 }else {
 System.out.println("User "+ userName + " order failed.");
 }
 DLock.releaseLock("Mate 10", identifier);
 }
}

class ThreadBuy extends Thread {
 private ServiceOrder service;

 public ThreadBuy(ServiceOrder service) {
 this.service = service;
 }

 @Override
 public void run() {
 service.handleOder();
 }
}

Step 2 Configure the connection address, port number, and password of the DCS instance
in the example code file DistributedLock.java.

In DistributedLock.java, set host and port to the connection address and port
number of the instance. In the getLockWithTimeout and releaseLock methods,
set passwd to the instance access password.

Step 3 Comment out the lock part in the test class CaseTest. The following is an
example:
//The lock code is commented out in the test class:
public void handleOder() {
 String userName = UUID.randomUUID().toString().substring(0,8) + Thread.currentThread().getName();
 //Lock code
 //String identifier = DLock.getLockWithTimeout("Mate 10", 10000, 2000);
 System.out.println("Processing order for user " + userName + "");
 if(n > 0) {
 int num = MAX - n + 1;
 System.out.println("User "+ userName + " is allocated number " + num + " mobile phone. Number of
mobile phones left: " + (--n) + "")
 }else {
 System.out.println("User "+ userName + " order failed.");
 }
 //Lock code
 //DLock.releaseLock("Mate 10", identifier);
}

Step 4 Compile and run a lock-free class. The purchases are disordered, as shown in the
following:
Processing order for user e04934ddThread-5
Processing order for user a4554180Thread-0
User a4554180Thread-0 is allocated number 2 mobile phone. Number of mobile phones left: 8.
Processing order for user b58eb811Thread-10
User b58eb811Thread-10 is allocated number 3 mobile phone. Number of mobile phones left: 7.

Distributed Cache Service
Best Practices

1 Serializing Access to Frequently Accessed
Resources

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Processing order for user e8391c0eThread-19
Processing order for user 21fd133aThread-13
Processing order for user 1dd04ff4Thread-6
User 1dd04ff4Thread-6 is allocated number 6 mobile phone. Number of mobile phones left: 4.
Processing order for user e5977112Thread-3
Processing order for user 4d7a8a2bThread-4
User e5977112Thread-3 is allocated number 7 mobile phone. Number of mobile phones left: 3.
Processing order for user 18967410Thread-15
User 18967410Thread-15 is allocated number 9 mobile phone. Number of mobile phones left: 1.
Processing order for user e4f51568Thread-14
User 21fd133aThread-13 is allocated number 5 mobile phone. Number of mobile phones left: 5.
User e8391c0eThread-19 is allocated number 4 mobile phone. Number of mobile phones left: 6.
Processing order for user d895d3f1Thread-12
User d895d3f1Thread-12 order failed.
Processing order for user 7b8d2526Thread-11
User 7b8d2526Thread-11 order failed.
Processing order for user d7ca1779Thread-8
User d7ca1779Thread-8 order failed.
Processing order for user 74fca0ecThread-1
User 74fca0ecThread-1 order failed.
User e04934ddThread-5 is allocated number 1 mobile phone. Number of mobile phones left: 9.
User e4f51568Thread-14 is allocated number 10 mobile phone. Number of mobile phones left: 0.
Processing order for user aae76a83Thread-7
User aae76a83Thread-7 order failed.
Processing order for user c638d2cfThread-2
User c638d2cfThread-2 order failed.
Processing order for user 2de29a4eThread-17
User 2de29a4eThread-17 order failed.
Processing order for user 40a46ba0Thread-18
User 40a46ba0Thread-18 order failed.
Processing order for user 211fd9c7Thread-9
User 211fd9c7Thread-9 order failed.
Processing order for user 911b83fcThread-16
User 911b83fcThread-16 order failed.
User 4d7a8a2bThread-4 is allocated number 8 mobile phone. Number of mobile phones left: 2.

Step 5 Add the lock code back to CaseTest, and compile and run the code. The following
shows sequential purchases:
Processing order for user eee56fb7Thread-16
User eee56fb7Thread-16 is allocated number 1 mobile phone. Number of mobile phones left: 9.
Processing order for user d6521816Thread-2
User d6521816Thread-2 is allocated number 2 mobile phone. Number of mobile phones left: 8.
Processing order for user d7b3b983Thread-19
User d7b3b983Thread-19 is allocated number 3 mobile phone. Number of mobile phones left: 7.
Processing order for user 36a6b97aThread-15
User 36a6b97aThread-15 is allocated number 4 mobile phone. Number of mobile phones left: 6.
Processing order for user 9a973456Thread-1
User 9a973456Thread-1 is allocated number 5 mobile phone. Number of mobile phones left: 5.
Processing order for user 03f1de9aThread-14
User 03f1de9aThread-14 is allocated number 6 mobile phone. Number of mobile phones left: 4.
Processing order for user 2c315ee6Thread-11
User 2c315ee6Thread-11 is allocated number 7 mobile phone. Number of mobile phones left: 3.
Processing order for user 2b03b7c0Thread-12
User 2b03b7c0Thread-12 is allocated number 8 mobile phone. Number of mobile phones left: 2.
Processing order for user 75f25749Thread-0
User 75f25749Thread-0 is allocated number 9 mobile phone. Number of mobile phones left: 1.
Processing order for user 26c71db5Thread-18
User 26c71db5Thread-18 is allocated number 10 mobile phone. Number of mobile phones left: 0.
Processing order for user c32654dbThread-17
User c32654dbThread-17 order failed.
Processing order for user df94370aThread-7
User df94370aThread-7 order failed.
Processing order for user 0af94cddThread-5
User 0af94cddThread-5 order failed.
Processing order for user e52428a4Thread-13
User e52428a4Thread-13 order failed.
Processing order for user 46f91208Thread-10
User 46f91208Thread-10 order failed.
Processing order for user e0ca87bbThread-9

Distributed Cache Service
Best Practices

1 Serializing Access to Frequently Accessed
Resources

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

User e0ca87bbThread-9 order failed.
Processing order for user f385af9aThread-8
User f385af9aThread-8 order failed.
Processing order for user 46c5f498Thread-6
User 46c5f498Thread-6 order failed.
Processing order for user 935e0f50Thread-3
User 935e0f50Thread-3 order failed.
Processing order for user d3eaae29Thread-4
User d3eaae29Thread-4 order failed.

----End

Distributed Cache Service
Best Practices

1 Serializing Access to Frequently Accessed
Resources

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

2 Ranking with Redis

The best practice for DCS guides you through ranking using DCS.

Scenario
Ranking is a function commonly used on web pages and apps. It is implemented
by listing key-values in descending order. However, a huge number of concurrent
operation and query requests can result in a performance bottleneck, significantly
increasing latency.

Ranking using DCS for Redis provides the following advantages:

● Data is stored in the cache, so read/write is fast.
● Multiple types of data structures, such as strings, lists, sets, and hashes are

supported.

Operation Guidance

Step 1 Prepare an ECS that runs the Windows OS.

Step 2 Install JDK1.8 (or later) and a development tool (Eclipse is used as an example)
on the ECS, and download the Jedis client.

Step 3 Create a DCS instance on the DCS console. Ensure that you configure the same
VPC and subnet for the DCS instance and the ECS.

Step 4 Run Eclipse on the ECS and create a Java project. Then, create a
productSalesRankDemo.java file for the example code, and reference the Jedis
client as a library to the project.

Step 5 Configure the connection address, port number, and password for the DCS
instance in the example code file.

Step 6 Compile and run the code.

----End

Sample Code
package dcsDemo02;

import java.util.ArrayList;

Distributed Cache Service
Best Practices 2 Ranking with Redis

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.eclipse.org/downloads/
https://jar-download.com/artifacts/redis.clients/jedis/2.9.0/source-code

import java.util.List;
import java.util.Set;
import java.util.UUID;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.Tuple;

public class productSalesRankDemo {
 static final int PRODUCT_KINDS = 30;

 public static void main(String[] args) {
 //Instance connection address, which is obtained from the DCS console.
 String host = "192.168.0.246";
 //Redis port number
 int port = 6379;

 Jedis jedisClient = new Jedis(host, port);

 try {
 //Instance password
 String authMsg = jedisClient.auth("******");
 if (!authMsg.equals("OK")) {
 System.out.println("AUTH FAILED: " + authMsg);
 }

 //Key
 String key = "Best-seller Rankings";

 jedisClient.del(key);

 //Generate product data at random
 List<String> productList = new ArrayList<>();
 for(int i = 0; i < PRODUCT_KINDS; i ++) {
 productList.add("product-" + UUID.randomUUID().toString());
 }

 //Generate sales volume at random
 for(int i = 0; i < productList.size(); i ++) {
 int sales = (int)(Math.random() * 20000);
 String product = productList.get(i);
 //Insert sales volume into Redis SortedSet
 jedisClient.zadd(key, sales, product);
 }

 System.out.println();
 System.out.println(" "+key);

 //Obtain all lists and display the lists by sales volume
 Set<Tuple> sortedProductList = jedisClient.zrevrangeWithScores(key, 0, -1);
 for(Tuple product : sortedProductList) {
 System.out.println("Product ID: " + product.getElement() + ", Sales volume: "
 + Double.valueOf(product.getScore()).intValue());
 }

 System.out.println();
 System.out.println(" "+key);
 System.out.println(" Top 5 Best-sellers");

 //Obtain the top 5 best-selling products and display the products by sales volume
 Set<Tuple> sortedTopList = jedisClient.zrevrangeWithScores(key, 0, 4);
 for(Tuple product : sortedTopList) {
 System.out.println("Product ID: " + product.getElement() + ", Sales volume: "
 + Double.valueOf(product.getScore()).intValue());
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 finally {

Distributed Cache Service
Best Practices 2 Ranking with Redis

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

 jedisClient.quit();
 jedisClient.close();
 }
 }

}

Operation Result
Compile and run the preceding Demo code. The operation result is as follows:

Best-seller Rankings
Product ID: product-b290c0d4-e919-4266-8eb5-7ab84b19862d, Sales volume: 18433
Product ID: product-e61a0642-d34f-46f4-a720-ee35940a5e7f, Sales volume: 18334
Product ID: product-ceeab7c3-69a7-4994-afc6-41b7bc463d44, Sales volume: 18196
Product ID: product-f2bdc549-8b3e-4db1-8cd4-a2ddef4f5d97, Sales volume: 17870
Product ID: product-f50ca2de-7fa4-45a3-bf32-23d34ac15a41, Sales volume: 17842
Product ID: product-d0c364e0-66ec-48a8-9ac9-4fb58adfd033, Sales volume: 17782
Product ID: product-5e406bbf-47c7-44a9-965e-e1e9b62ed1cc, Sales volume: 17093
Product ID: product-0c4d31ee-bb15-4c88-b319-a69f74e3c493, Sales volume: 16432
Product ID: product-a986e3a4-4023-4e00-8104-db97e459f958, Sales volume: 16380
Product ID: product-a3ac9738-bed2-4a9c-b96a-d8511ae7f03a, Sales volume: 15305
Product ID: product-6b8ad4b7-e134-480f-b3ae-3d35d242cb53, Sales volume: 14534
Product ID: product-26a9b41b-96b1-4de0-932b-f78d95d55b2d, Sales volume: 11417
Product ID: product-1f043255-a1f9-40a0-b48b-f40a81d07e0e, Sales volume: 10875
Product ID: product-c8fee24c-d601-4e0e-9d18-046a65e59835, Sales volume: 10521
Product ID: product-5869622b-1894-4702-b750-d76ff4b29163, Sales volume: 10271
Product ID: product-ff0317d2-d7be-4021-9d25-1f997d622768, Sales volume: 9909
Product ID: product-da254e81-6dec-4c76-928d-9a879a11ed8d, Sales volume: 9504
Product ID: product-fa976c02-b175-4e82-b53a-8c0df96fe877, Sales volume: 8630
Product ID: product-0624a180-4914-46b9-84d0-9dfbbdaa0da2, Sales volume: 8405
Product ID: product-d0079955-eaea-47b2-845f-5ff05a110a70, Sales volume: 7930
Product ID: product-a53145ef-1db9-4c4d-a029-9324e7f728fe, Sales volume: 7429
Product ID: product-9b1a1fd1-7c3b-4ae8-9fd3-ab6a0bf71cae, Sales volume: 5944
Product ID: product-cf894aee-c1cb-425e-a644-87ff06485eb7, Sales volume: 5252
Product ID: product-8bd78ba8-f2c4-4e5e-b393-60aa738eceae, Sales volume: 4903
Product ID: product-89b64402-c624-4cf1-8532-ae1b4ec4cabc, Sales volume: 4527
Product ID: product-98b85168-9226-43d9-b3cf-ef84e1c3d75f, Sales volume: 3095
Product ID: product-0dda314f-22a7-464b-ab8c-2f8f00823a39, Sales volume: 2425
Product ID: product-de7eb085-9435-4924-b6fa-9e9fe552d5a7, Sales volume: 1694
Product ID: product-9beadc07-aab0-438c-ac5e-bcc72b9d9c36, Sales volume: 1135
Product ID: product-43834316-4aca-4fb2-8d2d-c768513015c5, Sales volume: 256

 Best-seller Rankings
 Top 5 Best-sellers
Product ID: product-b290c0d4-e919-4266-8eb5-7ab84b19862d, Sales volume: 18433
Product ID: product-e61a0642-d34f-46f4-a720-ee35940a5e7f, Sales volume: 18334
Product ID: product-ceeab7c3-69a7-4994-afc6-41b7bc463d44, Sales volume: 18196
Product ID: product-f2bdc549-8b3e-4db1-8cd4-a2ddef4f5d97, Sales volume: 17870
Product ID: product-f50ca2de-7fa4-45a3-bf32-23d34ac15a41, Sales volume: 17842

Distributed Cache Service
Best Practices 2 Ranking with Redis

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

3 Implementing Bullet-Screen and Social
Comments with DCS

Scenario

Scenarios such as bullet-screen comments in videos or live streaming and
commenting and replying on a social website require high live efficiency and
interactivity. A platform must ensure a very low latency to support such services.
Comments are often sorted by time in reverse order. If a relational database is
adopted, the sorting efficiency becomes lower and lower as comments pile up.

Solution

Using DCS for Redis, a key-value list can be displayed in descending order from
multiple dimensions. Take live commenting as an example. Bullet-screen
comments can be ordered according to their weighted score calculated using their
timestamp and then displayed as sorted sets (zsets). The content can be directly
stored as values. Zset can also be applied to social websites. Since the quantity of
comments and replies is huge, they require ordered display and local persistence.
The primary key ID of a comment can be stored as a value, and the content of the
comment is stored in the database and queried with the ID.

Prerequisites
● You have created an ECS. To create an ECS, see Creating an ECS.
● You have created a DCS Redis instance in the same VPC, subnet, and security

group as the ECS. To create an instance, see Buying a DCS Redis Instance.

Procedure

Step 1 Log in to the prepared ECS. To log in, see Logging In to an ECS.

Step 2 Install JDK1.8 (or later) and Eclipse on the ECS, and download the Jedis client.

The development tools and clients mentioned in this document are for example
only.

Step 3 Run Eclipse on the ECS, create a Java project, and import the Jedis client as a
library into the project.

Distributed Cache Service
Best Practices

3 Implementing Bullet-Screen and Social Comments
with DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://support.huaweicloud.com/eu/qs-ecs/en-us_topic_0021831611.html
https://support.huaweicloud.com/eu/usermanual-dcs/dcs-ug-0713002.html
https://support.huaweicloud.com/eu/qs-ecs/en-us_topic_0092494193.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.eclipse.org/downloads/download.php
https://jar-download.com/artifacts/redis.clients/jedis/3.5.1/source-code

Step 4 Configure the connection address, port, and password of the DCS Redis instance in
Sample Code of Bullet-Screen Comments in Live Streaming or Sample Code of
Replying to a Comment on a Social Website.

Step 5 Compile and run the code.

----End

Sample Code of Bullet-Screen Comments in Live Streaming
package org.example.task;

import java.util.ArrayList;
import java.util.List;
import java.util.Set;
import java.util.UUID;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.Tuple;

public class VideoBulletScreenDemo {

 static final int MESSAGE_NUM = 30;

 public static void main(String[] args) {

 String host = "127.0.0.1";

 int port = 6379;

 Jedis jedisClient = new Jedis(host,port);

 try {
 String authMsg = jedisClient.auth("123456");

 if (!authMsg.equals("OK")){
 System.out.println("AUTH FAILED: " + authMsg);
 }

 String key = "Live comment list";

 jedisClient.del(key);

 // Randomly spawn bullets.
 List<String> messageList = new ArrayList<>();
 for (int i = 0; i < MESSAGE_NUM; i++){
 messageList.add("message-" + UUID.randomUUID().toString());
 }

 // Timestamp of random spawn.
 for (int i = 0; i < messageList.size(); i++){
 String message = messageList.get(i);
 int sales = (int)(Math.random()*1000);
 long time = System.currentTimeMillis() + sales;
 // Insert as sorted set of Redis.
 jedisClient.zadd(key,time,message);
 }

 System.out.println(" " + key);

 // Obtain all lists and output in chronological order.
 Set<Tuple> sortedMessageList = jedisClient.zrangeWithScores(key, 0, -1);
 for (Tuple message : sortedMessageList){
 System.out.println("bullets content: " + message.getElement() + ", sent time: " +
Double.valueOf(message.getScore()).longValue());
 }

Distributed Cache Service
Best Practices

3 Implementing Bullet-Screen and Social Comments
with DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

 System.out.println();
 System.out.println(" The latest 5 bullets");

 Set<Tuple> sortedTopList = jedisClient.zrevrangeWithScores(key,0,4);
 for (Tuple product : sortedTopList){
 System.out.println("bullets content: " + product.getElement() + ", sent time: " +
Double.valueOf(product.getScore()).longValue());
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 jedisClient.quit();
 jedisClient.close();
 }

 }

}

Compile and run the demo. The result is as follows:

Live comment list
bullets content: message-07f1add5-2f85-4309-9f31-313c860b33dc, sent time: 1686902337377
bullets content: message-2062e817-3145-4d8b-af7f-46f334c8569c, sent time: 1686902337394
bullets content: message-ad36a0ca-e8bd-4883-a091-e12a25c00106, sent time: 1686902337396
bullets content: message-f02f9960-bb57-49ae-b7d8-6bd6d3ad3d14, sent time: 1686902337412
bullets content: message-5ca39948-866e-4e54-a469-f958cae843f6, sent time: 1686902337457
bullets content: message-5cc8b4ba-da61-4d01-9625-cf2e7337ef10, sent time: 1686902337489
bullets content: message-15378516-18ce-4da7-bd3c-35c57dd65602, sent time: 1686902337495
bullets content: message-1b280525-53e5-4fc6-a3e7-fb8e71eef85e, sent time: 1686902337540
bullets content: message-adf876d1-e747-414e-92a2-397fc329bd58, sent time: 1686902337541
bullets content: message-1d8d7901-164f-4dd4-abb4-6f2345164b0e, sent time: 1686902337582
bullets content: message-fb35b1b4-277a-48bf-b22b-80070aae8475, sent time: 1686902337667
bullets content: message-973b1b03-bf95-44d8-ab91-0c317b2d61b3, sent time: 1686902337755
bullets content: message-1481f883-757d-47f7-b8c0-df024d6e64a4, sent time: 1686902337770
bullets content: message-b79292ca-2409-43fb-aaf0-e33f3b9d9c8d, sent time: 1686902337820
bullets content: message-66b0e955-d509-4475-9ae5-12fb86cf9596, sent time: 1686902337844
bullets content: message-12b6d15a-037a-47ee-8294-8625d202c0a0, sent time: 1686902337907
bullets content: message-fbc06323-da2a-44b8-874b-d2cf1a737064, sent time: 1686902337927
bullets content: message-7a0f787c-aff1-422f-9e62-4beda0cd5914, sent time: 1686902337977
bullets content: message-8ba5e4e0-22af-4f80-90a6-35062967e0fd, sent time: 1686902337992
bullets content: message-fa9e1169-e918-4141-9805-87edcf84c379, sent time: 1686902338000
bullets content: message-5d17be15-ba2e-461f-aba5-65c20c21d313, sent time: 1686902338059
bullets content: message-dcedc840-1be7-496a-b781-5b79c2091fe5, sent time: 1686902338067
bullets content: message-9e39eb28-6629-4d4c-8970-2acdc0e81a5c, sent time: 1686902338102
bullets content: message-030b11fe-c258-4ca2-ac82-5e6ca1eb688f, sent time: 1686902338211
bullets content: message-93322018-a987-47ba-8093-3937dddda97d, sent time: 1686902338242
bullets content: message-bc04a9b0-ec83-4a24-83f6-0a4f25ee8896, sent time: 1686902338281
bullets content: message-c6dd96d0-c938-41e4-b5d8-6275fdf83050, sent time: 1686902338290
bullets content: message-12b70173-1b86-4370-a7ea-dc0ade135422, sent time: 1686902338312
bullets content: message-a39c2ef8-8167-4945-b60d-355db6c69005, sent time: 1686902338318
bullets content: message-2c3bf2fb-5298-472c-958c-c4b53d734e89, sent time: 1686902338326

The latest 5 bullets
bullets content: message-2c3bf2fb-5298-472c-958c-c4b53d734e89, sent time: 1686902338326
bullets content: message-a39c2ef8-8167-4945-b60d-355db6c69005, sent time: 1686902338318
bullets content: message-12b70173-1b86-4370-a7ea-dc0ade135422, sent time: 1686902338312
bullets content: message-c6dd96d0-c938-41e4-b5d8-6275fdf83050, sent time: 1686902338290
bullets content: message-bc04a9b0-ec83-4a24-83f6-0a4f25ee8896, sent time: 1686902338281

Process finished with exit code 0

Sample Code of Replying to a Comment on a Social Website
package org.example.task;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;

Distributed Cache Service
Best Practices

3 Implementing Bullet-Screen and Social Comments
with DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

import java.util.Set;
import java.util.UUID;
import lombok.Data;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Tuple;

public class SiteCommentsDemo {

 // Total comments and replies.
 static final int COMMENT_NUM = 20;

 public static void main(String[] args) {

 String host = "127.0.0.1";

 int port = 6379;

 Jedis jedisClient = new Jedis(host,port);

 try {
 String authMsg = jedisClient.auth("123456");

 if (!authMsg.equals("OK")){
 System.out.println("AUTH FAILED: " + authMsg);
 }

 String key = "List of replies to comments on a social website";

 jedisClient.del(key);

 HashMap<Integer, Comment> map = new HashMap<>();

 // Randomly spawn objects for comment replies.
 List<Comment> commentList = new ArrayList<>();
 for (int i = 0; i < COMMENT_NUM; i++){
 Comment comment = new Comment();
 comment.setId(i+1);
 comment.setContent(UUID.randomUUID().toString().substring(0,8));

 long time = System.currentTimeMillis();
 Thread.sleep(50);
 comment.setTime(time);

 // Randomly spawn replies.
 if (i > 0 && Math.random() < 0.5){
 comment.setParentId((int)(Math.random()*i) + 1);
 }

 commentList.add(comment);
 map.put(comment.getId(),comment);

 // Insert as sorted set of Redis.
 jedisClient.zadd(key,time,String.valueOf(comment.getId()));
 }

 System.out.println(" " + key);

 // Obtain all lists and output in chronological order.
 Set<Tuple> sortedCommentList = jedisClient.zrangeWithScores(key, 0, -1);
 for (Tuple comment : sortedCommentList){
 Integer commentId = Integer.valueOf(comment.getElement());
 Comment tmpComment = map.get(commentId);
 System.out.println("comment ID: " + comment.getElement() + " comment parent ID: " +
tmpComment.getParentId() + ", comment time: " + Double.valueOf(comment.getScore()).longValue());
 }

Distributed Cache Service
Best Practices

3 Implementing Bullet-Screen and Social Comments
with DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

 System.out.println();
 System.out.println(" The latest 5 replies");

 Set<Tuple> sortedTopList = jedisClient.zrevrangeWithScores(key,0,4);
 for (Tuple comment : sortedTopList){
 Integer commentId = Integer.valueOf(comment.getElement());
 Comment tmpComment = map.get(commentId);
 if (tmpComment.getParentId() != null){
 System.out.println("comment ID: " + comment.getElement() + " reply:" +
tmpComment.getParentId() + " comment content:" + tmpComment.getContent() + ", comment time: " +
Double.valueOf(comment.getScore()).longValue());
 }else {
 System.out.println("comment ID: " + comment.getElement() + ", comment time: " +
Double.valueOf(comment.getScore()).longValue());
 }
 }

 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 jedisClient.quit();
 jedisClient.close();
 }

 }

 /**
 * comment data object
 */
 @Data
 static class Comment{
 // Comment ID
 private Integer id;
 // Comment content
 private String content;
 // Comment time
 private Long time;
 // Comment parent ID of a reply
 private Integer parentId;
 }
}

Compile and run the demo. The result is as follows:

List of replies to comments on a social website
comment id: 1 comment parentid: null, comment time: 1684745729506
comment id: 2 comment parentid: 1, comment time: 1684745729567
comment id: 3 comment parentid: null, comment time: 1684745729630
comment id: 4 comment parentid: 3, comment time: 1684745729692
comment id: 5 comment parentid: 3, comment time: 1684745729755
comment id: 6 comment parentid: 4, comment time: 1684745729819
comment id: 7 comment parentid: null, comment time: 1684745729879
comment id: 8 comment parentid: 6, comment time: 1684745729942
comment id: 9 comment parentid: null, comment time: 1684745730006
comment id: 10 comment parentid: 7, comment time: 1684745730069
comment id: 11 comment parentid: null, comment time: 1684745730132
comment id: 12 comment parentid: 9, comment time: 1684745730194
comment id: 13 comment parentid: null, comment time: 1684745730256
comment id: 14 comment parentid: 9, comment time: 1684745730320
comment id: 15 comment parentid: null, comment time: 1684745730382
comment id: 16 comment parentid: 1, comment time: 1684745730444
comment id: 17 comment parentid: null, comment time: 1684745730508
comment id: 18 comment parentid: 12, comment time: 1684745730570
comment id: 19 comment parentid: null, comment time: 1684745730631
comment id: 20 comment parentid: 12, comment time: 1684745730694

The latest 5 replies
comment id: 20 reply:12 comment content:877ba7f1, comment time: 1684745730694
comment id: 19, comment time: 1684745730631

Distributed Cache Service
Best Practices

3 Implementing Bullet-Screen and Social Comments
with DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

comment id: 18 reply:12 comment content:b29f2077, comment time: 1684745730570
comment id: 17, comment time: 1684745730508
comment id: 16 reply:1 comment content:9f31200e, comment time: 1684745730444

Distributed Cache Service
Best Practices

3 Implementing Bullet-Screen and Social Comments
with DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

4 Merging Game Servers with DCS

Scenario
Merging game servers is a strategy for some large online games. After running a
game for a while, game providers set up a new server to attract new players. As
users shift to the new server, game developers usually merge the new server and
the old one, so new and old players can play together for a better game
experience. During this process, game developers must consider how to
synchronize data among different servers.

Solution
DCS for Redis can be used in the following game server merge scenarios:

● Cross-server data synchronization
After servers merger, data on multiple servers needs to be synchronized to
ensure consistency. With the pub/sub message queuing mechanism of Redis,
data changes can be published to Redis channels. Other game servers can
subscribe to the channels to receive messages of changes.

● Cross-server resource sharing
After servers merge, resources on multiple servers, such as player props and
gold coins, can be shared. The distributed lock mechanism of Redis can ensure
mutual exclusion among multiple servers in resource access.

● Cross-server ranking
After servers merge, rankings on multiple servers can be combined to show
the ranking over all servers. Sorted sets in Redis can store ranking data and
perform calculation and query.

For details about cross-server resource sharing, see Serializing Access to
Frequently Accessed Resources. For details about cross-server ranking, see
Ranking with Redis.

The following describes how to implement cross-server data synchronization
through pub/sub message queuing in Redis.

Distributed Cache Service
Best Practices 4 Merging Game Servers with DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

NO TICE

When using Redis for game server merge, you need to consider data consistency,
performance, and security. Issues such as data errors, performance bottlenecks,
and security vulnerabilities should be avoided.

Procedure

Step 1 Use the Redis() method from the redis-py library to create a Redis client
connection on each game server.

Step 2 Use the pubsub() method to create a Redis subscriber and publisher on each
game server. They will be used for subscribing to messages from other game
servers and publishing data changes on the local server. When a server needs to
update data, it publishes updates to the Redis message queue. Other servers will
receive the updates and update their local data.

Step 3 Define a publish_update() method to publish updates, and use the
subscriber.listen() method in the listen_updates() method to listen to updates.

Step 4 Once an update is captured, the handle_update() method is invoked to process
the update and update local data. In game servers, the publish_update() method
can be invoked to publish updates, and the listen_updates() method can be
invoked to listen to updates.

----End

Sample Code

The sample code for using the pub/sub mechanism to implement cross-server
game data synchronization is as follows:

import redis
 # Create a Redis client connection.
redis_client = redis.Redis(host='localhost', port=6379, db=0)
 # Create a subscriber.
subscriber = redis_client.pubsub()
subscriber.subscribe('game_updates')
 # Create a publisher.
publisher = redis_client
 # Publish updates.
def publish_update(update):
 publisher.publish('game_updates', update)
 # Process updates.
def handle_update(update):
 # Update local data.
 print('Received update:', update)
 # Listen to updates.
def listen_updates():
 for message in subscriber.listen():
 if message['type'] == 'message':
 update = message['data']
 handle_update(update)
 # Invoke publish_update().
publish_update('player_data_updated')
 # Invoke listen_updates().
listen_updates()

Result:

Distributed Cache Service
Best Practices 4 Merging Game Servers with DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

D:\workspace\pythonProject\venv\Scripts\python.exe D:\workspace\pythonProject\test2.py
Received update: b'player_data_updated'

Distributed Cache Service
Best Practices 4 Merging Game Servers with DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

5 Flashing E-commerce Sales with DCS

Scenario

An e-commerce flash sale is like an online auction. To attract customers,
merchants release a small number of scarce offerings on the platform. Platforms
receive dozens or even hundreds of more order placements than usual. However,
only a few customers can place orders successfully. The traffic distribution process
of an e-commerce flash sales system is as follows:

1. User requests: When users place orders, the requests enter the load balancing
server.

2. Load balancing: The load balancing server distributes requests to multiple
backend servers based on certain algorithms. The algorithms include round
robin, random, and least connections.

3. Service processing logic: Backend servers receive requests and verify the
requested quantity and user identity.

4. Inventory deduction: If the inventory is robust, the backend server deducts
stocks, generates an order, and returns a success message to the user. If the
inventory is insufficient, the backend server returns a failure message.

5. Order processing: Backend servers save the order information to the database
and perform asynchronous processing such as notifying users of the order
status.

6. Cache update: Backend servers update the inventory information in the cache
for the next flash sale request.

The database is accessed multiple times during the flash sale process. Row-level
locking is usually used to restrict access. The database can be accessed and an
order can be placed only after a lock is obtained. However, the database is often
blocked by the sheer number of order requests.

Solution

As the cache of the database, DCS for Redis has the following advantages for
clients to access Redis for inventory query and order placement:

● Redis offers high read/write speed and concurrency performance to meet the
high concurrency requirements of e-commerce flash sales systems.

Distributed Cache Service
Best Practices 5 Flashing E-commerce Sales with DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

● Redis supports high-availability architecture such as master/standby and
cluster. Data persistence is supported, so data can be restored even if the
server breaks down.

● Redis supports transactions and atomic operations to guarantee the
consistency and accuracy of operations.

● Redis caches offering and user information to reduce the database load.

In this example, the hash structure of Redis shows the offering information. total
refers to the total amount, booked refers to the number of placed orders, and
remain refers to the inventory.

"product": {
"total": 200
"booked":0
"remain":200
}

During inventory deduction, the server sends a request to Redis for placing an
order. Redis is single-threaded, and Lua can guarantee the atomicity of multiple
commands. Run the following Lua script to deduct inventory:

local n = tonumber(ARGV[1])
if not n or n == 0 then
 return 0
end
local vals = redis.call(\"HMGET\", KEYS[1], \"total\", \"booked\", \"remain\");
local booked = tonumber(vals[2])
local remain = tonumber(vals[3])
if booked <= remain then
 redis.call(\"HINCRBY\", KEYS[1], \"booked\", n)
 redis.call(\"HINCRBY\", KEYS[1], \"remain\", -n)
 return n;
end
return 0

Prerequisites
● You have created an ECS. To create an ECS, see Creating an ECS.
● You have created a DCS Redis instance in the same VPC, subnet, and security

group as the ECS. To create an instance, see Buying a DCS Redis Instance.

Procedure

Step 1 Log in to the prepared ECS. To log in, see Logging In to an ECS.

Step 2 Install JDK1.8 (or later) and IntelliJ IDEA on the ECS. Download the Jedis client.

The development tools and clients mentioned in this document are for example
only.

Step 3 Run IntelliJ IDEA on the ECS. Create a Maven project, create a SecondsKill.java
file, and paste the sample code into it. In pom.xml, import Jedis:
<dependency>
 <groupId>redis.clients</groupId>
 <artifactId>jedis</artifactId>
 <version>4.2.0</version>
</dependency>

Step 4 Compile and run the following demo (this example uses Java):
package com.huawei.demo;
import java.util.ArrayList;

Distributed Cache Service
Best Practices 5 Flashing E-commerce Sales with DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

https://support.huaweicloud.com/eu/qs-ecs/en-us_topic_0021831611.html
https://support.huaweicloud.com/eu/usermanual-dcs/dcs-ug-0713002.html
https://support.huaweicloud.com/eu/qs-ecs/en-us_topic_0092494193.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.jetbrains.com/idea/
https://jar-download.com/artifacts/redis.clients/jedis/3.5.1/source-code

import java.util.*;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;

public class SecondsKill {
 private static void InitProduct(Jedis jedis) {
 jedis.hset("product", "total", "200");
 jedis.hset("product", "booked", "0");
 jedis.hset("product","remain", "200");
 }

 private static String LoadLuaScript(Jedis jedis) {
 String lua = "local n = tonumber(ARGV[1])\n"
 + "if not n or n == 0 then\n"
 + "return 0\n"
 + "end\n"
 + "local vals = redis.call(\"HMGET\", KEYS[1], \"total\", \"booked\", \"remain\");\n"
 + "local booked = tonumber(vals[2])\n"
 + "local remain = tonumber(vals[3])\n"
 + "if booked <= remain then\n"
 + "redis.call(\"HINCRBY\", KEYS[1], \"booked\", n)\n"
 + "redis.call(\"HINCRBY\", KEYS[1], \"remain\", -n)\n"
 + "return n;\n"
 + "end\n"
 + "return 0";
 String scriptLoad = jedis.scriptLoad(lua);

 return scriptLoad;
 }

 public static void main(String[] args) {
 JedisPoolConfig config = new JedisPoolConfig();
 // Maximum connections
 config.setMaxTotal(30);
 // Maximum idle connections
 config.setMaxIdle(2);
 // Connect to Redis via the actual address and port.
 JedisPool pool = new JedisPool(config, "127.0.0.1", 6379);
 Jedis jedis = null;
 try {
 jedis = pool.getResource();
 System.out.println(jedis);

 // Initialize product information.
 InitProduct(jedis);

 // Load the Lua script.
 String scriptLoad = LoadLuaScript(jedis);

 List<String> keys = new ArrayList<>();
 List<String> vals = new ArrayList<>();
 keys.add("product");

 // Request 15 items.
 int num = 15;
 vals.add(String.valueOf(num));

 // Run the Lua script.
 jedis.evalsha(scriptLoad, keys, vals);
 System.out.println("total:"+jedis.hget("product", "total")+"\n"+"booked:"+jedis.hget("product",
 "booked")+"\n"+"remain:"+jedis.hget("product","remain"));

 } catch (Exception ex) {
 ex.printStackTrace();
 } finally {
 if (jedis != null) {
 jedis.close();

Distributed Cache Service
Best Practices 5 Flashing E-commerce Sales with DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

 }
 }
 }
}

Result:

total:200
booked:15
remain:185

----End

Distributed Cache Service
Best Practices 5 Flashing E-commerce Sales with DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

6 Reconstructing Application System
Databases with DCS

Scenario
With the development of database applications like the Internet, service demands
are increasing rapidly. As the data volume and concurrent access volume are
increasing exponentially, conventional relational databases can hardly support
upper-layer services. Conventional databases are faced with issues such as
complex structure, high maintenance costs, poor access performance, limited
functions, and difficulty adapting to changes in data models or modes.

Solution
As a cache layer between the application and database, Redis can solve the above
issues and improve data read speed, reduce database load, improve application
performance, and ensure data reliability.

Data can be migrated from conventional relational databases such as MySQL to
Redis. Since data in Redis is stored in the key-value structure, you need to convert
the data structure in conventional databases. The following sections describe how
to migrate a table from MySQL to DCS for Redis.

Prerequisites
● You have a MySQL database with a table as the source data.

For example, create a table named student_info with 4 columns. After
migration, the values in the id column of the table will be the hash keys in
Redis, the names of the other columns will be the hash fields, and their values
will be the field values.

Distributed Cache Service
Best Practices

6 Reconstructing Application System Databases with
DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

● You have a DCS Redis instance as the target database. For details, see Buying
a DCS Redis Instance.

NO TE

If your source is the Huawei Cloud MySQL database, select a DCS Redis instance in the
same VPC as the database.

● You have created a Linux ECS in the same VPC as the DCS Redis instance. See
Purchasing and Logging In to a Linux ECS.

Procedure

Step 1 Log in to the ECS.

Step 2 Install MySQL and the Redis client on the ECS to extract, transmit, and convert
data. For details about Redis client installation, see redis-cli.

Step 3 Analyze the source data structure, create the following script in the ECS, and save
the script as migrate.sql.
SELECT CONCAT(
"*8\r\n", #8 refers to the number of fields as follows. It depends on the data structure in the MySQL table.
'$', LENGTH('HMSET'), '\r\n', #HMSET is a Redis command in the data writing process.
'HMSET', '\r\n',
'$', LENGTH(id), '\r\n', #id is the first field after HMSET. It will be transferred into Redis as a hash key.
id, '\r\n',
'$', LENGTH('name'), '\r\n', #'name' will be transferred into the hash field as strings, and other arguments
such as 'birthday' are applied in the same way.
'name', '\r\n',
'$', LENGTH(name), '\r\n', #name is a variable representing the company name in the MySQL table. It will
be transferred to be the value corresponding to the field of the last argument 'name'. Other variables such
as birthday are applied in the same way.
name, '\r\n',
'$', LENGTH(' birthday'), '\r\n',
' birthday', '\r\n',
'$', LENGTH(birthday), '\r\n',
birthday, '\r\n',
'$', LENGTH('city'), '\r\n',
'city', '\r\n',
'$', LENGTH(city), '\r\n',
city, '\r'
)
FROM student_info AS s

Step 4 Run the following command on the ECS to migrate data:
mysql -h <MySQL host> -P <MySQL port> -u <MySQL username> -D <MySQL database name> -p --skip-
column-names --raw < migrate.sql | redis-cli -h <Redis host> -p<Redis port> --pipe -a <Redis password>

Distributed Cache Service
Best Practices

6 Reconstructing Application System Databases with
DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://support.huaweicloud.com/eu/usermanual-dcs/dcs-ug-0713002.html
https://support.huaweicloud.com/eu/usermanual-dcs/dcs-ug-0713002.html
https://support.huaweicloud.com/eu/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/eu/usermanual-dcs/dcs-ug-0713004.html#section1

Table 6-1 Parameters

Parameter Description Example

-h Address of the MySQL
database.

xxxxxx

-P Port of MySQL. 3306

-u Username of MySQL. root

-D Database whose table is to be
migrated.

mysql

-p Password of MySQL. If MySQL
does not have a password,
leave this parameter blank.
For security, you can enter -p
only, and enter your password
when prompted by the
command window after
running the command.

xxxxxx

--skip-column-
names

The column names will not be
written in query results.

No need to be set.

--raw No escape in outputting
column values.

No need to be set.

-h after redis-cli Address of Redis. redis-xxxxxxxxxxxx.com

-p after redis-cli Port of Redis. 6379

--pipe Use Redis pipelining to
transmit data.

No need to be set.

-a Password of Redis. It does not
need to be set if your Redis
does not have a password.

xxxxxx

In this screenshot, the Redis instance does not have a password. In the result,
errors refers to the number of errors during running, and replies refers to the
number of replies received. If errors is 0, and replies is equal to the the number of
records in the MySQL table, the table is migrated successfully.

Step 5 One piece of MySQL data corresponds to one hash in Redis. Run the HGETALL
command for query and verification. Result:
[root@ecs-cmtest mysql-8.0]# redis-cli -h redis-xxxxxxxxxxxx.com -p 6379
redis-xxxxxxxxxxxx.com:6379> HGETALL 1
1) "name"
2) "Wilin"
3) " birthday"
4) "1995-06-12"
5) "city"

Distributed Cache Service
Best Practices

6 Reconstructing Application System Databases with
DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

6) "Nanjing"
redis-xxxxxxxxxxxx.com:6379> HGETALL 4
1) "name"
2) "Anbei"
3) " birthday"
4) "1969-10-19"
5) "city"
6) "Dongjing"

NO TE

You can adjust the migration plan based on actual query needs. For example, you can
convert other columns in MySQL to the hash keys, and convert the id column to the field.

----End

Distributed Cache Service
Best Practices

6 Reconstructing Application System Databases with
DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

7 Suggestions on Using Redis

Service Usage
Principle Description Lev

el
Remarks

Deploy services
nearby to
reduce latency.

If your service and DCS
instance are deployed far
from each other (not in the
same region) or with a high
latency (connected through
public networks), the read/
write performance will be
greatly affected by the
latency.

Req
uire
d

If your service is
latency-sensitive, do not
create cross-AZ DCS
Redis instances.

Separate hot
data from cold
data.

You can store frequently
accessed data (hot data) in
Redis, and infrequently
accessed data (cold data) in
databases such as MySQL
and Elasticsearch.

Sug
ges
ted

Infrequently accessed
data stored in the
memory occupies Redis
space and does not
accelerate access.

Differentiate
service data.

Store unrelated service data
in different Redis instances.

Req
uire
d

This prevents services
from affecting each
other and prevents
single instances from
being too large. This
also enables you to
quickly restore services
in case of faults.

Distributed Cache Service
Best Practices 7 Suggestions on Using Redis

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Principle Description Lev
el

Remarks

Do not use the SELECT
command for multi-DB on a
single instance.

Req
uire
d

Multi-DB on a single
Redis instance does not
provide good isolation
and is no longer in
active development by
open-source Redis. You
are advised not to
depend on this feature
in the future.

Set a proper
eviction policy.

If the eviction policy is set
properly, Redis can still
function when the memory
is used up unexpectedly.

Req
uire
d

You can select a policy
that meets your service
requirements. The
default eviction policy
used by DCS is volatile-
lru.

Use Redis as
cache.

Do not over-rely on Redis
transactions.

Sug
ges
ted

After a transaction is
executed, it cannot be
rolled back.

If data is abnormal, clear the
cache for data restoration.

Req
uire
d

Redis does not have a
mechanism or protocol
to ensure strong data
consistency. Therefore,
services cannot over-rely
on the accuracy of Redis
data.

When using Redis as cache,
set expiration on all keys. Do
not use Redis as a database.

Req
uire
d

Set expiration as
required, but a longer
expiration is not
necessarily better.

Prevent cache
breakdown.

Use Redis together with
local cache. Store frequently
used data in the local cache
and regularly update it
asynchronously.

Sug
ges
ted

-

Prevent cache
penetration.

Non-critical path operations
are passed through to the
database. Limit the rate of
access to the database.

Sug
ges
ted

-

Distributed Cache Service
Best Practices 7 Suggestions on Using Redis

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

https://support.huaweicloud.com/eu/dcs_faq/dcs-faq-0427031.html

Principle Description Lev
el

Remarks

If the requested data is not
found in Redis, read-only DB
instances are accessed. You
can use domain names to
connect to read-only DB
instances.

Sug
ges
ted

The idea is that the
request does not go to
the main database.
You can use domain
names to connect to
multiple read-only DB
instances. If a fault
occurs, you can add
such instances for
emergency handling.

Do not use
Redis as a
message queue.

In pub/sub scenarios, do not
use Redis as a message
queue.

Req
uire
d

● Unless otherwise
required, you are not
advised to use Redis
as a message queue.

● Using Redis as a
message queue
causes capacity,
network,
performance, and
function issues.

● If message queues
are required, use
Kafka for throughput
and RocketMQ for
reliability.

Select proper
specifications.

If service growth causes
increases in Redis requests,
use Proxy Cluster or Redis
Cluster instances.

Req
uire
d

Scaling up single-node
and master/standby
instances only expands
the memory and
bandwidth, but cannot
enhance the computing
capabilities.

In production, do not use
single-node instances. Use
master/standby or cluster
instances.

Req
uire
d

-

Do not use large
specifications for master/
standby instances.

Sug
ges
ted

Redis forks a process
when rewriting AOF or
running the BGSAVE
command. If the
memory is too large,
responses will be slow.

Distributed Cache Service
Best Practices 7 Suggestions on Using Redis

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Principle Description Lev
el

Remarks

Prepare for
degradation or
disaster
recovery.

When a cache miss occurs,
data is obtained from the
database. Alternatively,
when a fault occurs, allow
another Redis to take over
services automatically.

Sug
ges
ted

-

Data Design
Catego
ry

Principle Description Lev
el

Remarks

Keys Keep the
format
consistent.

Use the service name
or database name as
the prefix, followed
by colons (:). Ensure
that key names have
clear meanings.

Sug
ges
ted

For example: service
name:sub-service
name:ID.

Minimize the
key length.

Minimize the key
length without
compromising clarity
of the meaning.
Abbreviate common
words. For example,
user can be
abbreviated to u, and
messages can be
abbreviated to msg.

Sug
ges
ted

Use up to 128 bytes.
The shorter the
better.

Do not use
special
characters
except braces
({}).

Do not use special
characters such as
spaces, line brakes,
single or double
quotation marks, and
other escape
characters.

Re
qui
red

Redis uses braces ({})
to signify hash tags.
Braces in key names
must be used
correctly to avoid
unbalanced shards.

Values Use appropriate
value sizes.

Keep the value of a
key within 10 KB.

Sug
ges
ted

Large values may
cause unbalanced
shards, hot keys,
traffic or CPU usage
surges, and scaling or
migration failures.
These problems can
be avoided by proper
design.

Distributed Cache Service
Best Practices 7 Suggestions on Using Redis

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Catego
ry

Principle Description Lev
el

Remarks

Use appropriate
number of
elements in
each key.

Do not include too
many elements in
each Hash, Set, or
List. It is
recommended that
each key contain up
to 5000 elements.

Sug
ges
ted

Time complexity of
some commands,
such as HGETALL, is
directly related to the
quantity of elements
in a key. If commands
whose time
complexity is O(N) or
higher are frequently
executed and a key
has a large number
of elements, there
may be slow
requests, unbalanced
shards, or hot keys.

Use appropriate
data types.

This saves memory
and bandwidth.

Sug
ges
ted

For example, to store
multiple attributes of
a user, you can use
multiple keys, such as
set u:1:name "X"
and set u:1:age 20.
To save memory
usage, you can also
use the HMSET
command to set
multiple fields to
their respective
values in the hash
stored at one key.

Set appropriate
timeout.

Do not set a large
number of keys to
expire at the same
time.

Sug
ges
ted

When setting key
expiration, add or
subtract a random
offset from a base
expiry time, to
prevent a large
number of keys from
expiring at the same
time. Otherwise, CPU
usage will be high at
the expiry time.

Distributed Cache Service
Best Practices 7 Suggestions on Using Redis

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Command Usage
Principle Description Lev

el
Remarks

Exercise caution
when using
commands with
time complexity
of O(N).

Pay attention to the value of
N for commands whose
time complexity is O(N). If
the value of N is too large,
Redis will be blocked and
the CPU usage will be high.

Req
uire
d

For example, the
HGETALL, LRANGE,
SMEMBERS, ZRANGE,
and SINTER commands
will consume a large
number of CPU
resources if there is a
large number of
elements. Alternatively,
you can use SCAN sister
commands, such as
HSCAN, SSCAN, and
ZSCAN commands.

Do not use
high-risk
commands.

Do not use high-risk
commands such as
FLUSHALL, KEYS, and
HGETALL, or rename them.

Req
uire
d

For details, see
Renaming Commands.

Exercise caution
when using the
SELECT
command.

Redis does not have a strong
support for multi-DB. Redis
is single-threaded, so
databases interfere with
each other. You are advised
to use multiple Redis
instances instead of using
multi-DB on one instance.

Sug
gest
ed

-

Use batch
operations to
improve
efficiency.

For batch operations, use
the MGET command, MSET
command, or pipelining to
improve efficiency, but do
not include a large number
of elements in one batch
operation.

Sug
gest
ed

MGET command, MSET
command, and
pipelining differ in the
following ways:
● MGET and MSET are

atomic operations,
while pipelining is
not.

● Pipelining can be
used to send
multiple commands
at a time, while
MGET and MSET
cannot.

● Pipelining must be
supported by both
the server and the
client.

Distributed Cache Service
Best Practices 7 Suggestions on Using Redis

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

https://support.huaweicloud.com/eu/usermanual-dcs/dcs-ug-1009002.html

Principle Description Lev
el

Remarks

Do not use
time-consuming
code in Lua
scripts.

The timeout of Lua scripts is
5s, so avoid using long
scripts.

Req
uire
d

Long scripts: time-
consuming sleep
statements or long
loops.

Do not use
random
functions in Lua
scripts.

When invoking a Lua script,
do not use random functions
to specify keys. Otherwise,
the execution results will be
inconsistent between the
master and standby nodes,
causing data inconsistency.

Req
uire
d

-

Follow the rules
for using Lua on
cluster
instances.

Follow the rules for using
Lua on cluster instances.

Req
uire
d

● When the EVAL or
EVALSHA command
is run, the command
parameter must
contain at least one
key. Otherwise, the
client displays the
error message "ERR
eval/evalsha
numkeys must be
bigger than zero in
redis cluster mode."

● When the EVAL or
EVALSHA command
is run, a cluster DCS
Redis instance uses
the first key to
compute slots.
Ensure that the keys
to be operated are in
the same slot.

Optimize multi-
key operation
commands such
as MGET and
HMGET with
parallel
processing and
non-blocking
I/O.

Some clients do not treat
these commands differently.
Keys in such a command are
processed sequentially
before their values are
returned in a batch. This
process is slow and can be
optimized through
pipelining.

Sug
gest
ed

For example, running
the MGET command on
a cluster using Lettuce
is dozens of times faster
than using Jedis,
because Lettuce uses
pipelining and non-
blocking I/O while Jedis
does not have a special
plan itself. To use Jedis
in such scenarios, you
need to implement slot
grouping and pipelining
by yourself.

Distributed Cache Service
Best Practices 7 Suggestions on Using Redis

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Principle Description Lev
el

Remarks

Do not use the
DEL command
to directly
delete big keys.

Deleting big keys, especially
Sets, using DEL blocks other
requests.

Req
uire
d

In Redis 4.0 and later,
you can use the
UNLINK command to
delete big keys safely.
This command is non-
blocking.
In versions earlier than
Redis 4.0:
● To delete big Hashes,

use HSCAN + HDEL
commands.

● To delete big Lists,
use the LTRIM
command.

● To delete big Sets,
use SSCAN + SREM
commands.

● To delete big Sorted
Sets, use ZSCAN +
ZREM commands.

SDK Usage
Principle Description Lev

el
Remarks

Use connection
pools and
persistent
connections
("pconnect" in
Redis
terminology).

The performance of short
connections ("connect" in
Redis terminology) is poor.
Use clients with connection
pools.

Sug
gest
ed

Frequently connecting
to and disconnecting
from Redis will
unnecessarily consume
a lot of system
resources and can cause
host breakdown in
extreme cases. Ensure
that the Redis client
connection pool is
correctly configured.

The client must
perform fault
tolerance in
case of faults or
slow requests.

The client should have fault
tolerance and retry
mechanisms in case of
master/standby switchover,
command timeout, or slow
requests caused by network
fluctuation or configuration
errors.

Sug
gest
ed

See Redis Client Retry.

Distributed Cache Service
Best Practices 7 Suggestions on Using Redis

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Principle Description Lev
el

Remarks

Set appropriate
interval and
number of
retries.

Do not set the retry interval
too short or too long.

Req
uire
d

● If the retry interval is
very short, for
example, shorter
than 200
milliseconds, a retry
storm may occur,
and can easily cause
service avalanche.

● If the retry interval is
very long or the
number of retries is
set to a large value,
the service recovery
may be slow in the
case of a master/
standby switchover.

Avoid using
Lettuce.

Lettuce is the default client
of Spring and stands out in
terms of performance.
However, Jedis is more
stable because it is better at
detecting and handling
connection errors and
network fluctuations.
Therefore, Jedis is
recommended.

Sug
gest
ed

Lettuce has the
following problems:
● By default, Lettuce

does not have cluster
topology update
configurations. When
the cluster topology
changes (for
example after a
master/standby
switchover or
scaling), new nodes
cannot be identified,
causing service
failures. For details,
see How Do I
Handle an Error
When I Use Lettuce
to Connect to a
Redis Cluster
Instance After
Specification
Modification?

● Lettuce cannot
validate connections
in the connection
pool. If an invalid
connection is used,
services will fail.

Distributed Cache Service
Best Practices 7 Suggestions on Using Redis

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

https://support.huaweicloud.com/eu/dcs_faq/dcs-faq-0220613.html
https://support.huaweicloud.com/eu/dcs_faq/dcs-faq-0220613.html
https://support.huaweicloud.com/eu/dcs_faq/dcs-faq-0220613.html
https://support.huaweicloud.com/eu/dcs_faq/dcs-faq-0220613.html
https://support.huaweicloud.com/eu/dcs_faq/dcs-faq-0220613.html
https://support.huaweicloud.com/eu/dcs_faq/dcs-faq-0220613.html
https://support.huaweicloud.com/eu/dcs_faq/dcs-faq-0220613.html
https://support.huaweicloud.com/eu/dcs_faq/dcs-faq-0220613.html

O&M and Management
Principle Description Lev

el
Remarks

Use passwords
in production.

In production systems, use
passwords to protect Redis.

Req
uire
d

-

Ensure security
on the live
network.

Do not allow unauthorized
developers to connect to
redis-server in the
production environment.

Req
uire
d

-

Verify the fault
handling
capability or
disaster
recovery logic of
the service.

Organize drills in the test
environment or pre-
production environment to
verify service reliability in
Redis master/standby
switchover, breakdown, or
scaling scenarios.

Sug
gest
ed

Master/standby
switchover can be
triggered manually on
the console. It is
strongly recommended
that you use Lettuce for
these drills.

Configure
monitoring.

Pay attention to the Redis
capacity and expand it
before overload.

Req
uire
d

Configure CPU,
memory, and
bandwidth alarms
based on the alarm
thresholds.

Perform routine
health checks.

Perform routine checks on
the memory usage of each
node and whether the
memory usage of the
master nodes is balanced.

Sug
gest
ed

If memory usage is
unbalanced, big keys
exist and need to be
split and optimized.

Perform routine analysis on
hot keys and check whether
there are frequently
accessed keys.

Sug
gest
ed

-

Perform routine diagnosis
on Redis commands and
check whether O(N)
commands have potential
risks.

Sug
gest
ed

Even if an O(N)
command is not time-
consuming, it is
recommended that R&D
engineers analyze
whether the value of N
will increase with
service growth.

Perform routine analysis on
slow query logs.

Sug
gest
ed

Detect potential risks
based on slow query
logs and rectify faults
as soon as possible.

Distributed Cache Service
Best Practices 7 Suggestions on Using Redis

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

8 Redis Client Retry

Importance of Retry
Both the client and server may encounter temporary faults, such as transient
network or disk jitter, service unavailability, or invoking timeout, due to
infrastructure or running environment reasons. As a result, Redis operations may
fail. You can design automated retry mechanisms to reduce the impact of such
faults and ensure successful execution.

Scenarios Where Redis Operations Fail
Scenario Description

Master/standby
switchover
triggered by a
fault

If the master node is faulty due to Redis underlying
hardware or other reasons, a master/standby switchover is
triggered to ensure that the instance is still available. A
master/standby switchover has the following impacts:
● Disconnection down to seconds
● Read-only for up to 30 seconds

Read-only during
specification
modification

During specification modification, the instance may be
disconnected for seconds and read-only for minutes.
For more information about the impact of specification
modification, see Modifying Specifications.

Request blockage
caused by slow
queries

Operations whose time complexity is O(N) cause slow
queries and request blockage. In this case, other client
requests may temporarily fail.

Complex network
environment

Due to the complex network environment between the
client and the Redis server, network jitter, packet loss, and
data retransmission may occur occasionally. In this case,
client requests may temporarily fail.

Complex hardware
issues

Client requests may temporarily fail due to occasional
hardware faults, such as VM HA and disk latency jitter.

Distributed Cache Service
Best Practices 8 Redis Client Retry

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

https://support.huaweicloud.com/eu/usermanual-dcs/dcs-ug-0713006.html

Recommended Retry Rules
Retry Rule Description

Retry only
idempotent
operations.

Timeout may occur in any of the following phases:
● A command is successfully sent by the client but has

not reached Redis.
● The command has reached Redis, but the execution

times out.
● Redis has executed the command, but the result

returned to the client times out.
A retried operation may be repeatedly executed in Redis.
Therefore, not all operations are suitable to be retried. You
are advised to retry only idempotent operations, such as
running the SET command. For example, if you run the
SET a b command multiple times, the value of a can only
be b or the execution fails. If you run LPUSH mylist a,
which is not idempotent, mylist may contain multiple a
elements.

Configure proper
retry times and
interval.

Configure the retry times and interval based on service
requirements in actual scenarios to prevent the following
problems:
● If the number of retries is insufficient or the interval is

too long, the application may fail to complete
operations.

● If the number of retries is too large or the interval is
too short, the application may occupy too many system
resources and the server may be blocked due to too
many requests.

Common retry interval policies include immediate retry,
fixed-interval retry, exponential backoff retry, and random
backoff retry.

Avoid retry
nesting.

Retry nesting may cause the retry interval to be
exponentially amplified.

Record retry
exceptions and
print failure
reports.

During retry, you can print retry error logs at the WARN
level.

Jedis Client Configurations
● Retries are not supported in native JedisPool mode (for single-node, master/

standby, and Proxy Cluster instances). However, you can implement retries by
referring to JedisClusterCommand.

● Retries are supported in JedisCluster mode. You can set the maxAttempts
parameter to define the number of retry times when a failure occurs. The
default value is 5. By default, all JedisCluster operations invoke the retry
method.

Distributed Cache Service
Best Practices 8 Redis Client Retry

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

https://github.com/redis/jedis/blob/v3.7.0/src/main/java/redis/clients/jedis/JedisClusterCommand.java

Example code:
@Bean
JedisCluster jedisCluster() {
 Set<HostAndPort> hostAndPortsSet = new HashSet<>();
 hostAndPortsSet.add(new HostAndPort("{dcs_instance_address}", 6379));
 JedisPoolConfig jedisPoolConfig = new JedisPoolConfig();
 jedisPoolConfig.setMaxIdle(100);
 jedisPoolConfig.setMinIdle(1);
 jedisPoolConfig.setMaxTotal(1000);
 jedisPoolConfig.setMaxWaitMilis(2000);
 jedisPoolConfig.setMaxAttempts(5);
 return new JedisCluster(hostAndPortsSet, jedisPoolConfig);
}

Table 8-1 Recommended Jedis connection pool parameter settings

Parameter Description Recommended Setting

maxTotal Maximum number of
connections

Set this parameter based
on the number of HTTP
threads of the web
container and reserved
connections. Assume
that the
maxConnections
parameter of the Tomcat
Connector is set to 150
and each HTTP request
may concurrently send
two requests to Redis,
you are advised to set
this parameter to at
least 400 (150 x 2 +
100).
Limit: The value of
maxTotal multiplied by
the number of client
nodes (CCE containers or
service VMs) must be
less than the maximum
number of connections
allowed for a single DCS
Redis instance.
For example, if
maxClients of a master/
standby DCS Redis
instance is 10,000 and
maxTotal of a single
client is 500, the
maximum number of
clients is 20.

maxIdle Maximum number of
idle connections

Set this parameter to the
value of maxTotal.

Distributed Cache Service
Best Practices 8 Redis Client Retry

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Parameter Description Recommended Setting

minIdle Minimum number of idle
connections

Generally, you are
advised to set this
parameter to 1/X of
maxTotal. For example,
the recommended value
is 100.
In performance-sensitive
scenarios, you can set
this parameter to the
value of maxIdle to
prevent the impact
caused by frequent
connection quantity
changes. For example,
set this parameter to
400.

maxWaitMillis Maximum waiting time
for obtaining a
connection, in
milliseconds

The recommended
maximum waiting time
for obtaining a
connection from the
connection pool is the
maximum tolerable
timeout of a single
service minus the
timeout for command
execution. For example,
if the maximum
tolerable HTTP timeout
is 15s and the timeout of
Redis requests is 10s, set
this parameter to 5s.

timeout Command execution
timeout, in milliseconds

This parameter indicates
the maximum timeout
for running a Redis
command. Set this
parameter based on the
service logic. Generally,
you are advised to set
this timeout to longer
than 210 ms to ensure
network fault tolerance.
For special detection
logic or environment
exception detection, you
can adjust this timeout
to seconds.

Distributed Cache Service
Best Practices 8 Redis Client Retry

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Parameter Description Recommended Setting

minEvictableIdleTimeMil-
lis

Idle connection eviction
time, in milliseconds. If a
connection is not used
for a period longer than
this, it will be released.

If you do not want the
system to frequently re-
establish disconnected
connections, set this
parameter to a large
value (xx minutes) or set
this parameter to –1 and
check idle connections
periodically.

timeBetweenEviction-
RunsMillis

Interval for detecting idle
connections, in
milliseconds

The value is estimated
based on the number of
idle connections in the
system. For example, if
this interval is set to 30s,
the system detects
connections every 30s. If
an abnormal connection
is detected within 30s, it
will be removed. Set this
parameter based on the
number of connections.
If the number of
connections is too large
and this interval is too
short, request resources
will be wasted. If there
are hundreds of
connections, you are
advised to set this
parameter to 30s. The
value can be dynamically
adjusted based on
system requirements.

testOnBorrow Indicates whether to
check the connection
validity using the ping
command when
borrowing connections
from the resource pool.
Invalid connections will
be removed.

If your service is
extremely sensitive to
connections and the
performance is
acceptable, you can set
this parameter to True.
Generally, you are
advised to set this
parameter to False to
enable idle connection
detection.

Distributed Cache Service
Best Practices 8 Redis Client Retry

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

Parameter Description Recommended Setting

testWhileIdle Indicates whether to use
the ping command to
monitor the connection
validity during idle
resource monitoring.
Invalid connections will
be destroyed.

True

testOnReturn Indicates whether to
check the connection
validity using the ping
command when
returning connections to
the resource pool. Invalid
connections will be
removed.

False

maxAttempts Number of connection
retries when JedisCluster
is used

Recommended value: 3–
5. Default value: 5.
Set this parameter based
on the maximum
timeout intervals of
service APIs and a single
request. The maximum
value is 10. If the value
exceeds 10, the
processing time of a
single request is too
long, blocking other
requests.

Distributed Cache Service
Best Practices 8 Redis Client Retry

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

9 Using Nginx for Public Access to Single-
node, Master/Standby, or Proxy Cluster DCS

Redis Instances

Currently, DCS Redis 4.0, 5.0, and 6.0 instances cannot be bound with elastic IP
addresses (EIPs) and cannot be accessed over public networks directly.

This section describes how to access a single-node, master/standby, read/write
splitting, or Proxy Cluster DCS Redis 4.0, 5.0, or 6.0 instance by using a jump
server. This solution cannot be used to access a Redis Cluster instance over
public networks.

As shown in Figure 9-1, the ECS where Nginx is installed is a jump server. The ECS
is in the same VPC as the DCS Redis instances and can access the DCS Redis
instances through the subnet IP addresses. After an EIP is bound to the ECS, the
ECS can be accessed over the public network. Nginx can listen on multiple ports
and forward requests to different DCS Redis instances.

Figure 9-1 Accessing DCS Redis instances in a VPC by using Nginx

NO TE

Do not use public network access in the production environment. Client access exceptions
caused by poor public network performance will not be included in the SLA.

Distributed Cache Service
Best Practices

9 Using Nginx for Public Access to Single-node,
Master/Standby, or Proxy Cluster DCS Redis

Instances

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

Buying an ECS

Step 1 Obtain the VPC where the DCS Redis instance is deployed.

As shown in the following figure, the master/standby instance is deployed in the
vpc-demo VPC.

Figure 9-2 DCS Redis instance details

Step 2 Buy an ECS. Configure the ECS with the vpc-demo VPC, bind an EIP to the ECS,
and select the bandwidth as required.

Figure 9-3 ECS details

----End

Installing Nginx
After buying an ECS, install Nginx on the ECS. The following uses CentOS 7.x as an
example to describe how to install Nginx. The commands vary depending on the
OS.

Step 1 Run the following command to add Nginx to the Yum repository:

sudo rpm -Uvh http://nginx.org/packages/centos/7/noarch/RPMS/nginx-
release-centos-7-0.el7.ngx.noarch.rpm

Step 2 Run the following command to check whether Nginx has been added successfully:

yum search nginx

Step 3 Run the following command to install Nginx:

sudo yum install -y nginx

Step 4 Run the following command to install the stream module:

Distributed Cache Service
Best Practices

9 Using Nginx for Public Access to Single-node,
Master/Standby, or Proxy Cluster DCS Redis

Instances

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

yum install nginx-mod-stream --skip-broken

Step 5 Run the following commands to start Nginx and set it to run automatically upon
system startup:

sudo systemctl start nginx.service

sudo systemctl enable nginx.service

Step 6 In the address box of a browser, enter the server address (the EIP of the ECS) to
check whether Nginx is installed successfully.

If the following page is displayed, Nginx has been installed successfully.

----End

Setting Up Nginx

After installing Nginx, configure request forwarding rules to specify the ports that
Nginx listens on and the DCS Redis instances that Nginx forwards requests to.

Step 1 Open and modify the configuration file.

cd /etc/nginx

vi nginx.conf

The following is a configuration example. To access multiple DCS Redis instances
over public networks, configure multiple server sections and configure the DCS
Redis instance connection addresses for proxy_pass.

stream {
 server {
 listen 8080;
 proxy_pass 192.168.0.5:6379;
 }
 server {
 listen 8081;
 proxy_pass 192.168.0.6:6379;
 }
}

NO TE

Set proxy_pass to the IP address of the DCS Redis instance in the same VPC. You can obtain
the IP address from the Connection area on the DCS instance details page.

Distributed Cache Service
Best Practices

9 Using Nginx for Public Access to Single-node,
Master/Standby, or Proxy Cluster DCS Redis

Instances

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Figure 9-4 Adding Nginx configurations

Step 2 Restart Nginx.

service nginx restart

Step 3 Verify whether Nginx has been started.

netstat -an|grep 808

Figure 9-5 Starting Nginx and verifying the start

If Nginx is listening on ports 8080 and 8081, Nginx has been started successfully.

----End

(Optional) Persistent Connections
If persistent connections ("pconnect" in Redis terminology) are required for public
network access, add the following configuration in Configuring Nginx:
● Timeout of a connection from Nginx to the server

stream {
 server {
 listen 8080;
 proxy_pass 192.168.0.5:6379;
 proxy_socket_keepalive on;
 proxy_timeout 60m;
 proxy_connect_timeout 60s;
 }
 server {
 listen 8081;
 proxy_pass 192.168.0.6:6379;
 proxy_socket_keepalive on;
 proxy_timeout 60m;
 proxy_connect_timeout 60s;

Distributed Cache Service
Best Practices

9 Using Nginx for Public Access to Single-node,
Master/Standby, or Proxy Cluster DCS Redis

Instances

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

 }
}

The default value of proxy_timeout is 10m. You can set it to 60m or other
values as required. For details about this parameter, see the Nginx official
website.

● Timeout of a connection from the client to Nginx
http {
 keepalive_timeout 3600s;
}

The default value of keepalive_timeout is 75s. You can set it to 3600s or
other values as required. For details about this parameter, see the Nginx
official website.

Accessing DCS Redis Instances Using Nginx

Step 1 Log in to the ECS console and check the security group rules of the ECS that serves
as the jump server. Ensure that access over ports 8080 and 8081 is allowed.

1. Click the ECS name to go to the details page.
2. On the Security Groups tab page, click Modify Security Group Rule. The

security group configuration page is displayed.

Figure 9-6 Checking the ECS security group

Figure 9-7 Adding an inbound rule for the security group

Step 2 In the public network environment, open the redis-cli and run the following
command to check whether the login and query are successful:

NO TE

Ensure that redis-cli has been installed in the public network environment by referring to
redis-cli.

./redis-cli -h {myeip} -p {port} -a {mypassword}

Distributed Cache Service
Best Practices

9 Using Nginx for Public Access to Single-node,
Master/Standby, or Proxy Cluster DCS Redis

Instances

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

http://nginx.org/en/docs/stream/ngx_stream_proxy_module.html#
http://nginx.org/en/docs/stream/ngx_stream_proxy_module.html#
http://nginx.org/en/docs/http/ngx_http_core_module.html#http
http://nginx.org/en/docs/http/ngx_http_core_module.html#http
https://support.huaweicloud.com/eu/usermanual-dcs/dcs-ug-0713004.html

In the preceding command, {myeip} indicates the host connection address, which
should be replaced with the EIP of the ECS. Replace {port} with the listening port
of Nginx.

As shown in the following figures, the two listening ports are 8080 and 8081,
which correspond to two DCS Redis instances.

Figure 9-8 Accessing the first DCS Redis instance using Nginx

Figure 9-9 Accessing the second DCS Redis instance using Nginx

The jump server has now been set up. You can access Redis over public networks.

----End

Distributed Cache Service
Best Practices

9 Using Nginx for Public Access to Single-node,
Master/Standby, or Proxy Cluster DCS Redis

Instances

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

10 Using SSH Tunneling for Public
Access to a DCS Instance

Context

VPCs are used to ensure network security of public cloud services, such as DCS.
Your DCS instance can be accessed only by an ECS that is in the same VPC as the
instance.

Solution

If an EIP is bound to a Huawei Cloud ECS, you can remotely access the ECS from a
local computer.

You can create an SSH tunnel as a proxy to connect your DCS instance and local
computer to achieve proxy forwarding.

NO TE

● Redis Cluster DCS Redis 4.0, 5.0, or 6.0 instances do not support public access using this
solution.

● Do not use public network access in the production environment. Client access
exceptions caused by poor public network performance will not be included in the SLA.

Prerequisites

You have a DCS instance and a local computer that can connect to the Internet.
Tools such as MobaXterm and the Redis client have been installed.

You have an ECS that meets the following requirements:

● The ECS is bound with an EIP for public access.
● The VPC and subnet configured for the ECS are the same as those configured

for the DCS instance.
● Security group rules have been correctly configured for the ECS.
● The ECS runs the Linux OS.

If these prerequisites are met, the ECS can communicate with the DCS instance
and you can remotely connect to the ECS using SSH from a local computer.

Distributed Cache Service
Best Practices

10 Using SSH Tunneling for Public Access to a DCS
Instance

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Using MobaXterm to Create a Tunnel as a Jump Server

Step 1 Create an SSH session for connecting to the ECS using port 22.

Figure 10-1 Creating an SSH session

Step 2 After the session is configured, enter the username and password to log in to the
ECS. After login, enter "TMOUT=0" to prevent the session from being
automatically closed due to timeout.

Figure 10-2 Entering "TMOUT=0"

Step 3 Click Tunneling to create a tunnel.

Distributed Cache Service
Best Practices

10 Using SSH Tunneling for Public Access to a DCS
Instance

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Figure 10-3 Creating a tunnel

Step 4 Set the local IP address to 127.0.0.1 and start the tunnel.

Figure 10-4 Starting the tunnel

Step 5 Open the Redis client on the local computer. The following uses the Redis CLI as
an example. Run the following command to access the DCS instance:

Redis-cli -h 127.0.0.1 -p 3306 -a {password}

Parameter description:

-h {host name}: localhost or 127.0.0.1, which is the same as the local IP address
configured for the tunnel.

-p {port number}: 3306, which is the same as the forward port configured for the
tunnel.

-a {password}: password of the DCS instance.

Distributed Cache Service
Best Practices

10 Using SSH Tunneling for Public Access to a DCS
Instance

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

Step 6 If the connection is successful, the following information is displayed.

Figure 10-5 Successfully connecting to a DCS instance

----End

Distributed Cache Service
Best Practices

10 Using SSH Tunneling for Public Access to a DCS
Instance

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

11 Using ELB for Public Access to DCS

Currently, DCS Redis 4.0, 5.0, and 6.0 instances cannot be bound with elastic IP
addresses (EIPs) and cannot be accessed over public networks directly. This section
describes how to access a single-node, master/standby, read/write splitting, or
Proxy Cluster instance or a node in a Redis Cluster instance through public
networks by enabling cross-VPC backend on a load balancer.

NO TE

● Due to cluster node address translation, you cannot access a Redis Cluster as a whole.
You can only access individual nodes in the cluster.

● Do not use public network access in the production environment. Client access
exceptions caused by poor public network performance will not be included in the SLA.

The following figure shows the process for accessing DCS through ELB.

Figure 11-1 Process for accessing DCS through ELB

Distributed Cache Service
Best Practices 11 Using ELB for Public Access to DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

Configurations

Step 1 Create a VPC or use an existing one.

Step 2 Buy a DCS Redis instance. Record the IP address and port number of the
instance.

Step 3 Create a dedicated load balancer.

NO TE

● A shared load balancer does not support cross-VPC backend servers. Therefore, it cannot
be bound to a DCS instance.

● For Specification, select Network load balancing (TCP/UDP).

● To access the DCS instance over public networks, enable Cross-VPC Backend when
creating a dedicated load balancer.

Step 4 Add a TCP listener to the dedicated load balancer.

NO TE

1. When adding a backend server, click the Cross-VPC Backend Servers tab and then click
Add Cross-VPC Backend Server.

2. In the Add Cross-VPC Backend Server dialog box, enter the IP address and port
number of your DCS instance.

3. A Redis Cluster DCS instance contains multiple master/replica pairs. When configuring a
cross-VPC backend server, you can add the IP address and port number of any master or
replica node.

4. If you enable Health Check, you do not need to manually configure the port. By
default, the service port of the backend server will be used.

Step 5 Create a VPC peering connection. For the local VPC, select the VPC where your
load balancer is located. For the peer VPC, select the VPC where your DCS instance
is located.

NO TE

Even if your load balancer and DCS instance are in the same VPC, you still need to create a
VPC peering connection. For the local VPC, select the VPC where your load balancer and
DCS instance are located. For the peer VPC, select another VPC.

Step 6 Click the name of the VPC peering connection to go to its details page. Obtain
Local VPC CIDR Block and Peer VPC CIDR Block.

Step 7 Configure local and peer routes for the VPC peering connection.

1. On the Local Routes and Peer Routes tab pages, click the link to go to the
route tables page.

Distributed Cache Service
Best Practices 11 Using ELB for Public Access to DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

https://support.huaweicloud.com/eu/usermanual-vpc/en-us_topic_0013935842.html
https://support.huaweicloud.com/eu/usermanual-dcs/dcs-ug-0713002.html
https://support.huaweicloud.com/eu/usermanual-elb/elb_lb_000006.html
https://support.huaweicloud.com/eu/usermanual-elb/elb_ug_jt_0006.html#section1
https://support.huaweicloud.com/eu/usermanual-vpc/en-us_topic_0046655038.html

2. Local route: On the summary page of local routes, click Add Route. In the
displayed Add Route dialog box, set Destination to the value of Peer VPC
CIDR Block of the VPC peering connection, set Next Hop Type to VPC
peering connection, set Next Hop to the VPC peering connection created in
5, and click OK.

3. Peer route: On the summary page of peer routes, click Add Route. In the
displayed Add Route dialog box, set Destination to the value of Local VPC
CIDR Block of the VPC peering connection, set Next Hop Type to VPC
peering connection, set Next Hop to the VPC peering connection created in
5, and click OK.

NO TE

If the load balancer and the DCS instance are in the same VPC, you do not need to
add a peer route.

Step 8 Perform a health check on the IP address of the DCS instance. If the health check
result is Healthy, the added cross-VPC backend IP address can be used.

1. On the Elastic Load Balance page, click the name of the created load
balancer. The basic information page of the load balancer is displayed.

2. On the Backend Server Groups > IP as Backend Servers tab page, view the
health check result of the DCS instance IP address.

----End

Connecting to the DCS Instance Through ELB
● Connecting to a node in a Redis Cluster DCS instance through ELB

a. View the basic information of the load balancer created in Step 3.

Distributed Cache Service
Best Practices 11 Using ELB for Public Access to DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

b. Buy an ECS, log in to it, and install the Redis client by referring to redis-
cli.

c. On the Redis client, connect to the DCS instance using the IP address and
port number configured in Step 4. If you use the EIP and port number of
the load balancer, an error will be reported.

● Connecting to a single-node, master/standby, read/write splitting, or Proxy
Cluster DCS instance through ELB
a. View the IPv4 EIP and port number of the load balancer created in Step

3.

b. Buy an ECS, log in to it, and install the Redis client by referring to redis-
cli.

c. Use redis-cli to access the load balancer using its EIP and port number
(which is 80).

Distributed Cache Service
Best Practices 11 Using ELB for Public Access to DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

https://support.huaweicloud.com/eu/qs-ecs/en-us_topic_0021831611.html
https://support.huaweicloud.com/eu/usermanual-dcs/dcs-ug-0713004.html
https://support.huaweicloud.com/eu/usermanual-dcs/dcs-ug-0713004.html
https://support.huaweicloud.com/eu/qs-ecs/en-us_topic_0021831611.html
https://support.huaweicloud.com/eu/usermanual-dcs/dcs-ug-0713004.html
https://support.huaweicloud.com/eu/usermanual-dcs/dcs-ug-0713004.html

d. Write a key through ELB.

e. Log in to the DCS console. On the Cache Manager page, choose More >
Connect to Redis in the row that contains the DCS instance created in
Step 2. Check whether the key written in d exists.

Distributed Cache Service
Best Practices 11 Using ELB for Public Access to DCS

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

12 Detecting and Handling Big Keys
and Hot Keys

Definitions of Big Keys and Hot Keys
Term Definition

Big key There are two types of big keys:
● Keys that have a large value. If the size of a single String

key exceeds 10 KB, or if the size of all elements of a key
combined exceeds 50 MB, the key is defined as a big key.

● Keys that have a large number of elements. If the number
of elements in a key exceeds 5000, the key is defined as a
big key.

Hot key A key is defined as a hot key if it is frequently requested or if it
occupies a large number of resources. For example:
● In a cluster instance, a shard processes 10,000 requests per

second, among which 3000 are performed on the same key.
● In a cluster instance, a shard uses a total of 100 Mbits/s

inbound and outbound bandwidth, among which 80 Mbits/s
is used by the HGETALL operation on a Hash key.

The definitions are for reference only. The actual service scenarios must be
considered when you define big keys and hot keys.

Distributed Cache Service
Best Practices 12 Detecting and Handling Big Keys and Hot Keys

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Impact of Big Keys and Hot Keys
Category Impact

Big key Instance specifications fail to be modified.
Specification modification of a Redis Cluster instance involves
rebalancing (data migration between nodes). Redis has a limit
on key migration. If the instance has any single key bigger than
512 MB, the modification will fail when big key migration
between nodes times out. The bigger the key, the more likely
the migration will fail.

Data migration fails.
During data migration, if a key has many elements, other keys
will be blocked and will be stored in the memory buffer of the
migration ECS. If they are blocked for a long time, the
migration will fail.

Cluster shards are unbalanced.
● The memory usage of shards is unbalanced. For example, if

a shard uses a large memory or even uses up the memory,
keys on this shard are evicted, and resources of other shards
are wasted.

● The bandwidth usage of shards is unbalanced. For example,
flow control is repeatedly triggered on a shard.

Latency of client command execution increases.
Slow operations on a big key block other commands, resulting
in a large number of slow queries.

Flow control is triggered on the instance.
Frequently reading data from big keys exhausts the outbound
bandwidth of the instance, triggering flow control. As a result,
a large number of commands time out or slow queries occur,
affecting services.

Master/standby switchover is triggered.
If the high-risk DEL operation is performed on a big key, the
master node may be blocked for a long time, causing a
master/standby switchover.

Hot key Cluster shards are unbalanced.
If only the shard where the hot key is located is busy
processing service queries, there may be performance
bottlenecks on a single shard, and the compute resources of
other shards may be wasted.

Distributed Cache Service
Best Practices 12 Detecting and Handling Big Keys and Hot Keys

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

Category Impact

CPU usage surges.
A large number of operations on hot keys may cause high CPU
usage. If the operations are on a single cluster shard, the CPU
usage of the shard where the hot key is located will surge. This
will slow down other requests and the overall performance. If
the service volume increases sharply, a master/standby
switchover may be triggered.

Cache breakdown may occur.
If Redis cannot handle the pressure on hot keys, requests will
hit the database. The database may break down as its load
increases dramatically, affecting other services.

Big keys and hot keys can be avoided through proper design. For details, see
Suggestions on Using Redis.

Detecting Big Keys and Hot Keys
Method Description

Through Big Key Analysis
and Hot Key Analysis on
the DCS console

See Analyzing Big Keys and Hot Keys.

By using the bigkeys and
hotkeys options on redis-
cli

● redis-cli uses the bigkeys option to traverse all
keys in a Redis instance and returns the overall
key statistics and the biggest key of six data
types: Strings, Lists, Hashes, Sets, Zsets, and
Streams. The command is redis-cli -h <Instance
connection address> -p <Port number> -a
<Password> --bigkeys.

● In Redis 4.0 and later, you can use the hotkeys
option to quickly find hot keys in redis-cli. Run
this command during service running to find hot
keys: redis-cli -h <Instance connection address>
-p <Port number> -a <Password> --hotkeys.
The hot key details can be obtained from the
summary part in the returned result.

Distributed Cache Service
Best Practices 12 Detecting and Handling Big Keys and Hot Keys

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

https://support.huaweicloud.com/eu/usermanual-dcs/dcs-ug-190808001.html

Method Description

Searching for big keys
using Redis commands

If there is a pattern of big keys, for example, the
prefix is cloud:msg:test, you can use a program to
scan for keys that match the prefix, and then run
commands to query the number of members in the
key and query the key sizes to find big keys.
● Commands for querying the number of

members: LLEN, HLEN, XLEN, ZCARD, SCARD
● Commands for querying the memory usage of

keys: DEBUG OBJECT, MEMORY USAGE
CAUTION

This method consumes a large number of computing
resources. To ensure service running, do not use this
method on instances with heavy service pressure.

Searching for big keys
using redis-rdb-tools

redis-rdb-tools is an open-source tool for
analyzing Redis RDB snapshot files. You can use it
to analyze the memory usage of all keys in a Redis
instance.
To use this method, you must export the RDB file
of an instance on the Backups & Restorations
page of the DCS console.
CAUTION

This method does not affect service running, but is not as
timely as online analysis.

Distributed Cache Service
Best Practices 12 Detecting and Handling Big Keys and Hot Keys

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

https://github.com/sripathikrishnan/redis-rdb-tools?spm=a2c4g.11186623.0.0.140745d6UhJnC6
https://support.huaweicloud.com/eu/usermanual-dcs/dcs-ug-0312034.html
https://support.huaweicloud.com/eu/usermanual-dcs/dcs-ug-0312034.html

Optimizing Big Keys and Hot Keys
Category Method

Big key Split big keys.
Scenarios:
● If the big key is a String, you can split it into several key-

value pairs and use MGET or a pipeline consisting of
multiple GET operations to obtain the values. In this way,
the pressure of a single operation can be split. For a cluster
instance, the operation pressure can be evenly distributed to
multiple shards, reducing the impact on a single shard.

● If the big key contains multiple elements, and the
elements must be operated together, the big key cannot
be split. You can remove the big key from Redis and store it
on other storage media instead. This scenario should be
avoided by design.

● If the big key contains multiple elements, and only some
elements need to be operated each time, separate the
elements. Take a Hash key as an example. Each time you
run the HGET or HSET command, the result of the hash
value modulo N (customized on the client) determines
which key the field falls on. This algorithm is similar to that
used for calculating slots in Redis Cluster.

Store big keys on other storage media.
If a big key cannot be split, it is not suitable to be stored in
Redis. You can store it on other storage media, such as NoSQL
databases, and delete the big key from Redis.
CAUTION

Do not use the DEL command to delete big keys. Otherwise, Redis may
be blocked or even a master/standby switchover may occur.

Set appropriate expiration and delete expired data
regularly.
Appropriate expiration prevents expired data from remaining in
Redis. Due to Redis's lazy free, expired data may not be deleted
in time. If this occurs, scan expired keys.

Hot key Split read and write requests.
If a hot key is frequently read, configure read/write splitting
on the client to reduce the impact on the master node. You can
also add replicas to meet the read requirements, but there
cannot be too many replicas. In DCS, replicas replicate data
from the master in parallel. The replicas are independent of
each other and the replication delay is short. However, if there
is a large number of replicas, CPU usage and network load on
the master node will be high.

Distributed Cache Service
Best Practices 12 Detecting and Handling Big Keys and Hot Keys

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

https://support.huaweicloud.com/eu/usermanual-dcs/dcs-ug-210330002.html
https://support.huaweicloud.com/eu/dcs_faq/dcs-faq-0427027.html

Category Method

Use the client cache or local cache.
If you know what keys are frequently used, you can design a
two-level cache architecture (client/local cache and remote
Redis). Frequently used data is obtained from the local cache
first. The local cache and remote cache are updated with data
writes at the same time. In this way, the read pressure on
frequently accessed data can be separated. This method is
costly because it requires changes to the client architecture and
code.

Design a circuit breaker or degradation mechanism.
Hot keys can easily result in cache breakdown. During peak
hours, requests are passed through to the backend database,
causing service avalanche. To ensure availability, the system
must have a circuit breaker or degradation mechanism to limit
the traffic and degrade services if breakdown occurs.

Distributed Cache Service
Best Practices 12 Detecting and Handling Big Keys and Hot Keys

Issue 01 (2024-02-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

	Contents
	1 Serializing Access to Frequently Accessed Resources
	2 Ranking with Redis
	3 Implementing Bullet-Screen and Social Comments with DCS
	4 Merging Game Servers with DCS
	5 Flashing E-commerce Sales with DCS
	6 Reconstructing Application System Databases with DCS
	7 Suggestions on Using Redis
	8 Redis Client Retry
	9 Using Nginx for Public Access to Single-node, Master/Standby, or Proxy Cluster DCS Redis Instances
	10 Using SSH Tunneling for Public Access to a DCS Instance
	11 Using ELB for Public Access to DCS
	12 Detecting and Handling Big Keys and Hot Keys

